The role of PTEN in cardioprotection against ischaemia-reperfusion injury
نویسندگان
چکیده
Activation of the PI3K/AKT pathway protects the heart from ischaemia-reperfusion injury. Phosphatase and Tensin Homolog deleted on Chromosome10 (PTEN) is a negative regulator of this pathway. The hypothesis on which this thesis was based stated that inhibition of PTEN would confer protection against ischaemia-reperfusion injury. PTEN was reduced using: 1) a PTEN inhibitor, bpV(HOpic), 2) a mouse model of PTEN haploinsufficiency and 3) PTEN siRNA. The effects of PTEN reduction on ischaemia-reperfusion injury were investigated by using: 1) an isolated perfused heart model of ischaemia-reperfusion injury, 2) an isolated cardiomyocyte model of ROS induced mitochondria damage and 3) a cellular model of hypoxia-reoxygenation injury. No protection against ischaemia-reperfusion was observed in isolated perfused myocardium from C57BL/J6 mice, which were perfused with bpV(HOpic), or from PTENmice. Likewise, no protection against ROS induced mitochondrial damage was observed in isolated cardiomyocytes from the PTEN mice. In these models an increase in AKT activity was recorded, however, this was not sufficient to confer cardioprotection. Similarly, H9c2 rat myoblast cells, silenced for PTEN expression using siRNA, were not protected against hypoxia-reoxygenation injury. Nevertheless, in isolated C57BL/J6 hearts perfused with bpV(HOpic) and in myocardium from PTEN mice, when the PI3K/AKT pathway was stimulated by the cardioprotective intervention of ischaemic preconditioning a reduced threshold for protection was achieved. To conclude, the level of PTEN inhibition achieved in this study was not sufficient to bestow protection against simulated ischaemiareperfusion injury. However, it appears that reductions in PTEN can increase the sensitivity towards cardioprotection.
منابع مشابه
The Role of Exercise Preconditioning in Cardioprotection against Ischemia Reperfusion Injury
Cardiovascular diseases are still the main cause of mortality around the world. Therefore, it is essential to develop practical means to reduce their burden. A wealth of evidence supports the role of physical exercise in attenuating many of the risk factors of cardiovascular diseases. Moreover, endurance training warrants protection against myocardial infarction. Exercise, even if performed ...
متن کاملAldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde.
AIMS The present study was designed to examine the mechanism involved in mitochondrial aldehyde dehydrogenase (ALDH2)-induced cardioprotection against ischaemia/reperfusion (I/R) injury with a focus on autophagy. METHODS Wild-type (WT), ALDH2 overexpression, and knockout (KO) mice (n = 4-6 for each index measured) were subjected to I/R, and myocardial function was assessed using echocardiogra...
متن کاملComplete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1 alpha.
AIMS We investigated whether hypoxia-inducible factor 1 alpha (HIF-1 alpha) plays a role in the acute phase of ischaemic preconditioning (IPC). METHODS AND RESULTS Hearts from wild-type (WT) mice and mice heterozygous for a null allele at the locus encoding HIF-1 alpha (HET) were subjected to IPC (10-min ischaemia/5 min reperfusion, or two cycles of 5 min ischaemia/5 min reperfusion), followe...
متن کاملInvestigating the role of acute and repeated stress on remote ischemic preconditioning-induced cardioprotection
Objective(s): To study the effect of acute and repeated stress on cardioprotection-induced by remote ischemic preconditioning (RIPC).Materials and Methods: RIPC was induced by giving 4 short cycles of ischemia and reperfusion, each consisting of five min. The Langendorff’s apparatus was used to perfuse the isolated rat hearts by subjecti...
متن کاملCorrection: TAT-Protein Blockade during Ischemia/Reperfusion Reveals Critical Role for p85 PI3K-PTEN Interaction in Cardiomyocyte Injury
Recent work shows that cooling protection after mouse cardiac arrest and cardiomyocyte ischemia is mediated by Akt activation. The PI3K p85 subunit can either augment or inhibit Akt activation depending on its binding to p110 or PTEN respectively. To further clarify the role of PI3K p85 in cardioprotection, we studied novel TAT-p85 fusion proteins that selectively inhibit PI3K p85 binding. We h...
متن کامل